
Cutting-edge Modular Mounter

HM520

Specifications							
Machine Type		High Speed Machine	LED Machine	Multi Function Machine			
The Number of Spindles		20 Spindl (Rota	6 Spindle x 2 Gantry (Piano Type)				
Placement Speed		80,000 CP	60,000 CPH (Optimum)				
Chip		±25 μm (±40 μm @ Cpk ≥ 1.0				
Placement Accuracy	IC		±30 μm @ Cpk ≥ 1.0				
Component Dange	Size	0201 ~	0402 ~ □ 55 mm				
Component Range	Max. Height	2	15 mm				
PCB Size (mm)	Single	Standard: L510 x W580, Option: L750 x W580 (For PCBs less than L460mm, 1 Step placement is available					
PCD SIZE (IIIII)	Dual	Standard: L510 x W310, Option: L	mm, 1 Step placement is available)				
PCB Thickness (mm)		0.3 ~ 4.2					
Feeder Capacity (8 mm	Standard)	80 ea (Docking Cart)	8 ea (Fixed Base)	80 ea (Docking Cart)			
	Power	3 Phase, AC 200V / 208V / 220V / 240V / 380V / 415V ±10%					
Utility	FOWER						
	Air Consumption						
Weight (kg)		Approx. 1,605					
External Dimension (m	m)	L890 x D2,370 x H1,921					

۰USA 6000 Phyllis Dr. Cypress, CA 90630, USA Tel : +1-714-373-4200

• Europe Tel:+82-70-7147-6322, 6311 Fax:+82-31-8018-3721

• Asia Tel:+82-70-7147-6320,6323 Fax:+82-31-8018-3721

• Head Office 6, Pangyo-ro 319beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea

The dimensions, product specifications and values in this catalog are actual values measured under conditions designated by our company.
 The above items may differ depending on actual operating conditions. For the details related to options, please contact the person responsible for sales.

Cutting-edge Modular Mounter

HM520

Cutting-edge Modular Mounter

HM520

Actual productivity is highest among machines of the same class and is optimized to high quality production

Configures a flexible production line by applying a modular head and various production modes

Realizes unmanned, non-stop, and zero defect production using the Smart Factory S/W Solution

HS(High Speed) Head

- 20 Spindle x 2 Gantry
- 80,000 CPH
- ±25 μm @ Cpk ≥ 1.0
- 0201 ~ 🗌 6 mm (H 2 mm)

T-Solution

T-IT

Provides solutions for component misplacement prevention and material production history management

T-OLP

Plans the production order of various PCB files with optimum production conditions

T-PNP

Maintains optimum quality through a real time diagnosis report

T-Mobile

Monitors the production status anywhere, anytime, using a tablet PC and smart watch

MF(Multi Function) Head

- 6 Spindle x 2 Gantry
- 60,000 CPH
- ±30 µm @ Cpk ≥ 1.0
- 0402 ~ 🗌 55 mm (H 15 mm)

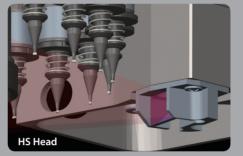
HIGH PRODUCTIVITY

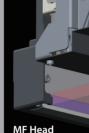
20 Spindle Head


High Speed and High

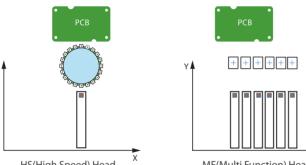
Definition Fix Camera

Possible to do high speed and high-precision placement of Mini LED chips as well as microchips (0402, 0603) for mobile phone PCBs using the high definition camera without a reduction of actual productivity.


HM Feeder (8 mm)

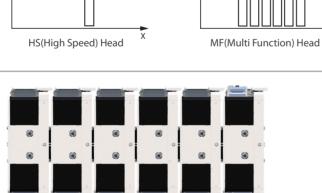


HIGH RELIABILITY

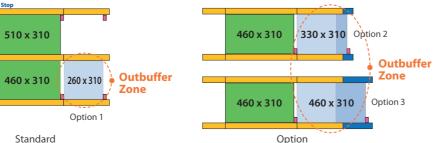

Prevents Non-insertion by the Side View Camera

Optimized LED Production

Ensures optimized production with a minimum number of feeders by applying the rotary head, realizing actual productivity of a Max. of 74,000 CPH.

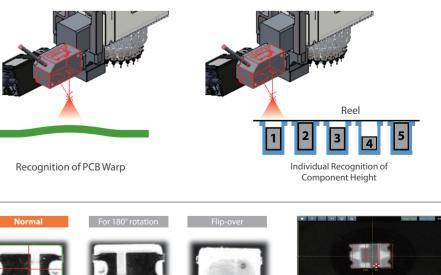

Improved Productivity per Area


Increases the productivity per unit area significantly by minimizing the machine length while increasing the length of an available PCB.


(140% compared to DECAN Series models)

Adopts an Outbuffer

Increases actual productivity by adding an Outbuffer Extension as an option to reduce the transfer time between boards.


Corrects Pickup/Placement Coordinate Automatically

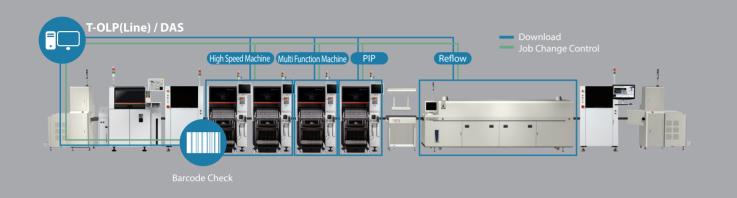
Corrects the X-Y pickup position and prevents misplacement automatically by tracing the COR data based on the center of the nozzle.

Height Sensor


Picks up an component using the height sensor without performing separate teaching and automatically corrects the difference in the placement height due to PCB warping.

Function to Check for LED Component Flip-over

Prevents a defective placement by checking for component flip-over using the Vision Camera.



Spindle Run-out Correction

FLEXIBLE PRODUCTION

Family Job Change

Provides Various Production Modes

Helps the user to achieve the optimum production conditions by selecting a production mode suitable for the production environment.

Flexible Applicability to PCBs

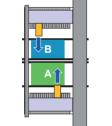
Allows mixed production of different models

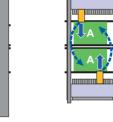
by applying the dual lane, and applies 2 Step

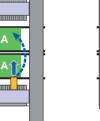
placement to be able to respond to up to

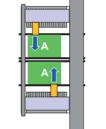
Range of Applicability to

microchips to a maximum of 55mm


Possible to place components from 0201

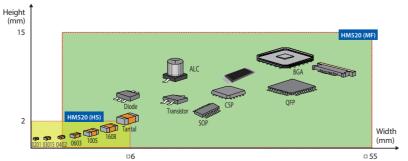

components, with a height of a maximum

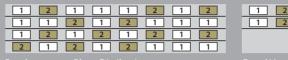

750 mm PCBs.


Components

of 15 mm.

Different Model Production Mode




Mixed Production of **Different Models**

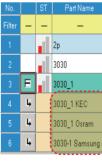
EASY OPERATION

LED Rank / Random

1 1 1
 2
 2
 2

 2
 2
 2

Automatic Nozzle Rearrangement

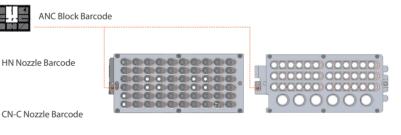

The fiducial camera recognizes the barcode of the ANC and nozzles to help ensure the optimum rearrangement of nozzles on the ANC block.

Multi-Vendor Component Support

Manages the same components supplied from two companies as a one Part Name to help create a PCB program and improves the component recognition loss rate due to a difference in vendors.

Improves Convenience When Using Peripheral Devices

It is possible to install a flux dipping unit or 7 sets of 8mm based feeders additionally at the left of the tray feeder. It is also possible to perform cross installation of the tray feeders and docking cart easily within one minute by recognizing them automatically.



1	1	1	1	1
1	1	1	1	1
2	2	2	2	2
2	2	2	2	2

1	1	1	1	2	2	2	2
1	1	1	1	2	2	2	2
1	1	1	1	2	2	2	2
1	1	1	1	2	2	2	2



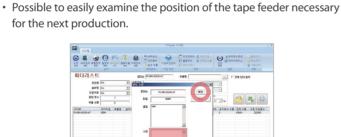
SOFTWARE SOLUTIONS

Offline Programming (T-OLP)

- Provides CAD interface, optimization, and line balancing functions
- Establishes a production plan that considers feeder rearrangement when changing a model using JOB Planning.

Offline Component Registration and Management (T-ELITE)

- Possible to register the information on a new component quickly using the built-in camera.
- Performs integrated management of the change in the component information.
- Possible to easily search / modify / duplicate / delete the component information registered in the Part Database.

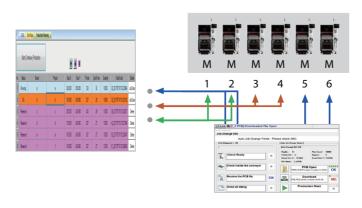

(T-Feeder)

Component Reel Barcode Issue and Registration (T-Part)

• Creates and manages the component reel information by issuing and registering the reel barcode to the component reel.

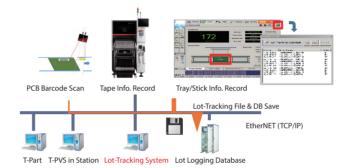
• Manages the feeder calibration history to maintain the feeding quality.

Feeder History Management Tool Support


Possible to Prepare the Feeder in Advance of Production

- Minimizes the model changing time using a docking cart before changing a model.
- Helps rearrange feeders easily taking into consideration a maximum of 8 sets of docking carts. (Feeder workstation or FLMS)

• Uses the 'Production Reservation' function to automatically change the family models (Multi JOB) in order and reduces production time.



Component Misplacement Prevention

- Inspects collectively whether components supplied by all feeders are the same as those set in the PCB program.
- Prevents misplacement errors by checking whether an appropriate component reel is installed in the corresponding feeder slot.

Production History Management System (LTS)

 Minimizes the range of recall and defective PCB repair that may occur later through the Lot tracking of production.

Prevents Production Delay due to a Shortage of Components (T-IT)

- Automatically manages the quantity of components remaining in the reel in use to help prepare components in shortage in advance.
- Adds components in shortage in the Material Request List automatically. Then the material room supplies the components in shortage in real time.

material list

deliverv

Start a request Ir

displayed

Input exhausted Add in the list

materials

Factory Monitoring and Remote Control System (T-Mobile)

- Possible to monitor the factory through remote connection and to check the error message of the machine/system.
- Possible to check and control the operation conditions of the machine by remote connection to the machine through a tablet device.

e list Finish request

Line Management

Major Production Index (KPI) Management and Monitoring (T-PNP)

 Monitors six production indexes and monitors the trend of each index in real time to help take measures against a problem with the line quickly.

Warning against Production Model Change (T-PNP)

• Warns the user against a production model change in advance to prevent a delay in model changing time.

Production History Inquiry and Reporting (T-PNP)

• Inquires about the production history by major index and supports the reporting function through a production index mailing system.

Analysis of the Cause of Defects by Period (T-PNP)

• Examines the cause of defects by analyzing the trend of the production data during a specific period of time and presents solutions.

Alarm Transmission and Maintenance (T-PNP)

• When a major defect occurs, transmits an alarm to the manager to help them take immediate measures against the cause of the defect at the spot.

M2M Communication Support (T-PNP)

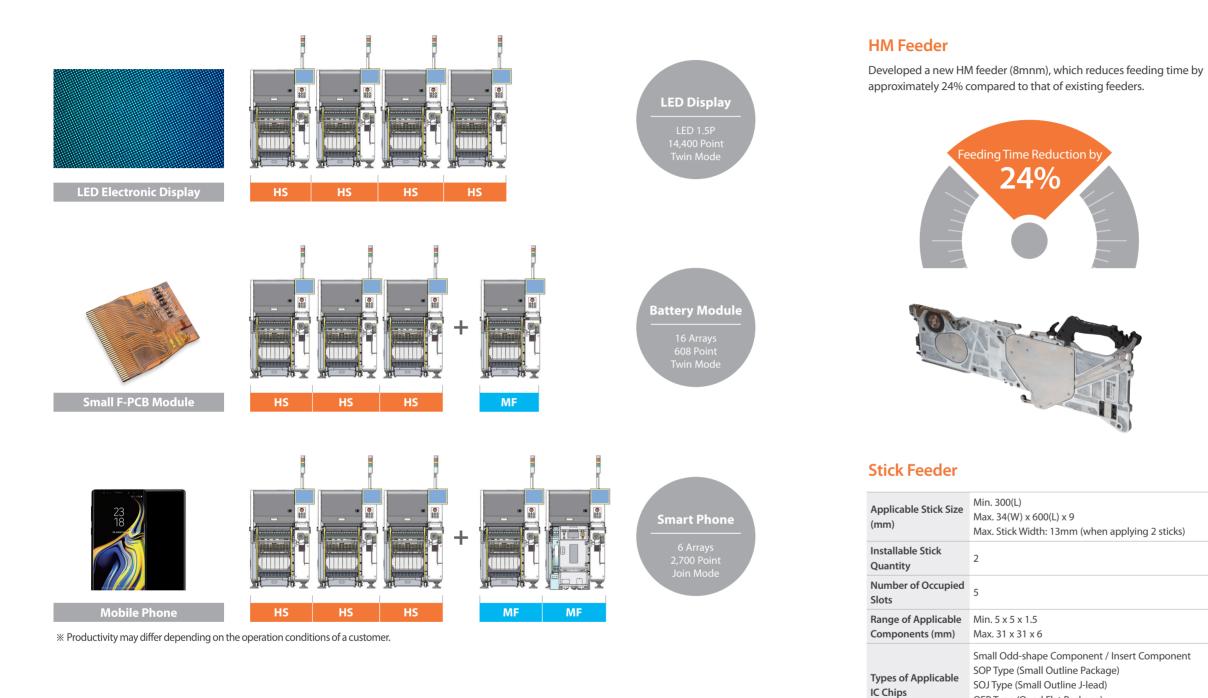
 Prevents a defective placement by sharing data between in-line machines and improves productivity.

T-PnP

KPI Management

	_		_			_	_			_
-	ra fire		1.440	18						
-			68) K. (J	2.613						
2	10	**		***	****	10.0	1211	Calc Terrori	104.0010-00.00	1115
	10.4		1004	8						
	101		STORE OF							1.5
	884		-			4	- 18			
				-						
	884		1000	-		-			participation of the second se	
	101	1	1000			1.0			101010-002	
	88.4		0.40	12	2		08			8.0
	884		11.801	18						$[0, -1)^{\prime}$
	840.4		41.855		- 5					-
1	881		1000							1000
1	101		11.805		- 1					[X,Y]
	100		to also							$[0,\infty)$
	101		410.01							-
	***		10.00				- 10			$ h_{i+1} \leq \varepsilon$
	181		1708		- 2		- 28			9.10
	101		17.00							8.11
1			100	-						
	-			-		-				k-k
			11.848	1			- 10			
	100		10.000			4				100

 United Instrument Ins



Warn against model change

Alarm & Maintenance

HM520 PRODUCTION IN-LINE

ACCESSORY

Tape Feeder

	W4P1	8 mm	12 mm	16 mm	24 mm	32 mm	44 mm	56 mm	72 mm
Tape Width (mm)	4	8	12	16	24	32	44	56	72
Feeding Pitch (mm)	1	2, 4	Min. 4 / Max. Tape Width						
Reel Diameter (mm)	Ø180	Ø178 ~ 330	Ø178 ~ 380	Ø178 ~ 380	Ø178 ~ 380	Ø178 ~ 380	Ø178 ~ 380	Ø178 ~ 380	Ø178 ~ 380
Application	HS	HS / MF	HS / MF	HS / MF	MF	MF	MF	MF	MF

QFP Type (Quad Flat Package)

PLCC Type (Plastic Leadless Chip Carrier)

Flux Dipping Unit

Distributes flux by sliding method, allowing high speed and high precision POP packaging.

Flux Application Ra	Flux Application Range (Thickness)						
Film Size	56.5 mm (X) x 56.5 mm (Y)						
Film Forming Time	Less than 3 seconds (based on the squeegee						
	reciprocating time)						
Control Range	0.015mm ~ 0.35mm (Squeegee Gap)						
Minimum Application Thickness Adjustment Unit							
	10 µm						
Number of Occupie	d Slots When Installing						
	7						
Flux Viscosity							
	101 ~ 20 Pa.S (Operating Temperature 24 \pm 4°C)						

Tray Feeder

Outline Dimension (mm)	564.6(W) x 750(L) x 918.2(H)
Weight (kg)	Max. 190
Tact Time	4.6 seconds (Single staged → 10-staged)
Tray Size (mm)	Min. 200 x 100 Max. 320 x 230
Magazine	1 Tray / Pallet 10 Pallet / Magazine 2 Magazine / Tray Feeder

Tray Feeder Equipped with a Tape Feeder

Tray Feeder Equipped with a Flux Dipping Unit